Basic ideas

- **Magnetic**: the signal source (magnetization)
- **Resonance**: signal excitation and detection
- **Imaging**: spatial encoding of signals

Magnetization has been formed, but…

- It aligns with the magnetic field at thermal equilibrium.
- Proper stimulation is required for signal detection.
- Richard Ernst
	- Awarded 1991 Nobel prize for the development of
		- FT NMR spectroscopy

Basic idea of resonance

• Motion of magnetization results in time-varying magnetic flux, inducing electrical current.

– Faraday's law of induction

- Force the motion of \overrightarrow{M} : excitation
- Evaluate the motion of \overrightarrow{M} : detection
- Basic tool of MRI: **RF coil**

Nuclear magnetization

Net Magnetization Vector

If magnetization does not align with B₀

Magnetization will precess along with B_0 (moving now!)

But the main magnetic field is…

- To generate nuclear magnetization – Aligned with the magnetic field
- Strong, homogeneous, and static
	- But not able to force the body magnet to move/tilt

• You need more to make it move! How?

Excitation field (B₁)

Resonance: the rotating/oscillating frequency of $B_1 =$ Larmor frequency

Excitation field (B_1) and the flip angle (α)

The flip/tilt angle: $\alpha = \gamma B_1 \tau$

After signal excitation (turning B₁ off)

Resonance: Precession of magnetization @Larmor frequency

Trajectory of excitation (laboratory view)

Bloch simulator: <http://www.drcmr.dk/BlochSimulator/>

Device for RF excitation: RF coil

- To generate a rotating excitation field (B_1) which is perpendicular to the main field (B_0)
	- Oscillating frequency: Larmor freq. (RF waveband)
- Drive the coil with AC at Larmor frequency
	- High efficiency/gain at Larmor freq.
	- Used as an EM-wave transmitter

Excitation field (B₁)

Resonance: the rotating/oscillating frequency of $B_1 =$ Larmor frequency

Detection

- Faraday's law of induction
- Precession of magnetization induces AC at Larmor frequency.

After turning off the excitation…

Resonance: Precession of magnetization @Larmor frequency

Device for RF reception: RF coil

- To pick up the inductive electrical current
	- $-$ Orientation: perpendicular to the main field (B_0)
	- Oscillating frequency: Larmor freq. (RF waveband)
	- Used as an EM-wave receptor

RF excitation and detection

- The requisite for RF excitation and detection is quite similar!
- You can use the same RF coil for both purposes.
- Usually, different coils are used separately to reach
	- Homogeneous excitation
	- Sensitive detection

Relaxation

- After excitation, the spins tend to return to its initial state (thermal equilibrium)
	- $-$ T1 relaxation: recovery of longitudinal magnetization M_z
	- $-$ T2 relaxation: decay of transverse magnetization M_{xv}
- Inherent property of tissue, which is associated with microstructure and biochemistry

Excitation field (B₁)

in d

Excitation of magnetization

Para di

Relaxation

Magnetization always returns to its thermal equilibrium

T1 Relaxation

- Longitudinal return of magnetization
- T1 relaxation time is the time constant of exponential recovery
	- Reaching 63% of its maximum after one T1
- Longer T1 indicates slower recovery

T1 recovery

Time

The physical meaning of T1 Relaxation

- During excitation, some of the spins receive RF energy to reach higher energy level
- To return to thermal equilibrium, the release of energy must occur
	- Released to its surroundings (lattice)
- Also termed as spin-lattice relaxation

T2 Relaxation

- Transverse decay of magnetization
- T2 relaxation time is the time constant of exponential decay
	- Reaching 37% of its initial value after one T2
- Longer T2 indicates slower decay

T2 decay

The physical meaning of T2 Relaxation

- Local field disturbance cause the incoherence of transverse magnetization
	- Magnetic dipoles
	- Rotation and trembling of water molecules
	- Macromolecules (e.g., protein)
- Also termed as spin-spin relaxation

T2 contrast: an effect of TE

 $TE = 30$ TE = 90 TE = 150

Why relaxation matters?

- Relaxation provides information of tissue change associated with diseases.
- For example, tumor usually has higher T2 than normal tissue.

Brain MRI

In fact, decay could be faster…

- Inhomogeneity of magnetic field may lead to incoherent precession and intravoxel dephasing.
	- Intrinsic defects of main magnetic field
	- Tissue susceptibility
- T2* relaxation (T2* ≤ T2)

Every voxel contains tons of H nuclei

Phase incoherence

Intravoxel dephasing

Free Induction Decay

T2 vs T2*

- T2: atomic and molecular level, non-reversible
- T2*: related to instruments/tissues, reversible

• How to retrieve T2 decay? – Pure microscopic information

Concept of spin echo

- Following excitation, use an 180° RF to invert the phase angle
- Spins refocus to form the spin echo after an equal duration
	- T2 relaxation

Spin echo

Measurement of T1/T2 relaxation time

- Concept: sampling on the relaxation curve
- T2: multi-echo spin-echo
- T1: inversion recovery
- Curve fitting with two or more points